# Import classes from the bigdata-client Python SDK from bigdata_client import Bigdatafrom bigdata_client.models.chat import MarkdownLinkFormatterformatter = MarkdownLinkFormatter()# Log in to Bigdatabigdata = Bigdata("YOUR_USERNAME", "YOUR_PASSWORD")# Create a new chat with the Markdown formatterchat = bigdata.chat.new("Pfizer company analysis", formatter=formatter)# First questionresponse = chat.ask("Evaluate the experience and reputation of the management team of Pfizer in 2024?", streaming=True)print(f"\nQuestion:\n - {response.question}")print(f"\nAnswer:")for streamingChatInteraction in response: print(streamingChatInteraction, end="")
Chat service classes
MarkdownLinkFormatter
Copy
Ask AI
# Import classes from the bigdata-client Python SDK from bigdata_client import Bigdatafrom bigdata_client.models.chat import MarkdownLinkFormatterformatter = MarkdownLinkFormatter()# Log in to Bigdatabigdata = Bigdata("YOUR_USERNAME", "YOUR_PASSWORD")# Create a new chat with the Markdown formatterchat = bigdata.chat.new("Pfizer company analysis", formatter=formatter)# First questionresponse = chat.ask("Evaluate the experience and reputation of the management team of Pfizer in 2024?", streaming=True)print(f"\nQuestion:\n - {response.question}")print(f"\nAnswer:")for streamingChatInteraction in response: print(streamingChatInteraction, end="")
Formatter for inline attributions in chat messages that uses Markdown links.
Returns:A string representing the formatted attribution as a Markdown link.
Copy
Ask AI
# Import classes from the bigdata-client Python SDK from bigdata_client import Bigdatafrom bigdata_client.models.chat import MarkdownLinkFormatterformatter = MarkdownLinkFormatter()# Log in to Bigdatabigdata = Bigdata("YOUR_USERNAME", "YOUR_PASSWORD")# Create a new chat with the Markdown formatterchat = bigdata.chat.new("Pfizer company analysis", formatter=formatter)# First questionresponse = chat.ask("Evaluate the experience and reputation of the management team of Pfizer in 2024?", streaming=True)print(f"\nQuestion:\n - {response.question}")print(f"\nAnswer:")for streamingChatInteraction in response: print(streamingChatInteraction, end="")